2017년 10월 31일 화요일

[Lv1.] deep learning 미니배치 학습


import sys, os
import numpy as np
from mnist import load_mnist

(x_train, t_train), (x_test, t_test) = \
load_mnist(normalize=True, one_hot_label=True)

print(x_train.shape)
print(t_train.shape)

train_size=x_train.shape[0]
batch_size = 10
batch_mask = np.random.choice(train_size, batch_size)
x_batch = x_train [ batch_mask ]
t_batch = t_train [batch_mask]

print(batch_mask)    #예시[33103 53490 27997  5178  6386 22710 42145 21482 20055 48357]

print(train_size)    #60000



1. mnist 불러오기.
mnist.py를 자신이 쓰는 스크립트(코딩할 파일)이 같은 폴더내에 존재해야 import가능 합니다.


2. np.random.choice(train_size, batch_size)
x_train.shape[0]
이 row 첫번째 줄이 아니라
여기서 0 은 컬럼을 뜻하고

x_train.shpae[1]
여기서 1은 row를 뜻합니다.

댓글 없음:

댓글 쓰기